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staff of the Monsanto/Washington University AfRccia'iior 

under the sponsorship of the Advanced Research Projects 

Agency, Department of Defense, through a contract ;vith 
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I 
I 
I 4th-0RDER TENSOR INVARIANTS AND GEOMETRIC REPRESENTATION 

I idti* Edward M. ku 

ABSTRACT 

First and second order invariants of 4th-order tensor are 

derived.  Geometric representations analoy>us to  Mohr's circle 

are presented to aid the visualization and operations of 4th- 

order tensors such as transformation, determination of principal 

direction and optimization procedures.  Possible applications of 

the invariants are suggested. 

♦Assistant Professor, Materials Research Laboratory, Mechanical 

and Aerospace Engineering, Washington University, St. Louis, 

Missouri. 



Introduction 

Many physical properties of composites and crystals are 

functions of material orientations.  Such properties can be 

characterized by the appropriate constitutive functions. In 

order to insure the invariancy with respect to coordinate 

transformations, these functions are customarily expressed in 

tensorial forms.  Additional groundwork is required in practical 

engineering application of such constitutive functions.  Material 

constants must be measured for design computations, and analytical 

techniques must be explored for operational efficiency.  Both 

experimental techniques and operational procedures are well 

I      established for physical properties which are scalars, vectors 

and second order tensors. For example, the measurement of strain 

tensor, as well as its analysis, visualization and transformation 

by the Mohr's Circle are well known.  However, comparable 

operations for 4th-order tensors have not been fully explored.  In 

i      the advent of composites as anisotropic engineering materials , 

the analysis and operation of 4th-order tensors becomes a 

practical necessity.  Several familiar examples of technical 4thr 

order tensors are: elastic compliance, electrostriction, 2nd~order 

term of non-linear thermal expansion and environmental swelling. 

There remain many other important directional dependent physical 

properties such as strength and certain transport phenomena whose 

tensorial characteristics have yet to be adequately verified 

experimentally.  In order to facilitate the analysis, measurement 

and operation of such physical properties, we derive the invariants 

of a 4th-order tensor and suggest a geometric interpretation. 

I 
I 
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I 
I 

Invariants of 4th-0rder Tensor 

Tensor representation of physical properties which are 

directionally dependent for engineering application is customarily 

in Cartesian coordinates.  For this reason the derivation of 

invariants of a 4th-order Cartesian tensor is discussed.  To avoid 

distinction between pseudo-invariants and invariants, only right- 

handed Cartesian coordinates are used.  The invariants derived 

are for rotation about the x3 axis.  Companion invarinats for 

other axes of rotation can be derived through simple permutation 

of the indicies.  At different stages of the derivation, the 

symmetry conditions of the 4th-order tensor are used to simplify 

I       the algebra.  Appropriate modifications which are cumbersome but 

straightforward must be made for skew-symmetric tensors. 

■ We consider ^ 4th-order symmetric, Cartesian tensor S^^ and 

note that from tensor algebra that its scalar contractions are 

invariant to orthogonal coordinate transformations. We shall seek 

I      these scalar contractions and find the number of independent 

invariants. 

1 A 4th-order tensor S. .kl can be contracted through combina- 

I       tions of the substitution tensor 6^ and the permutation tensor 

e. ., which are defined as: 
iDk 

I 
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'ij 
100 
010 
001 (1) 

I 

and 
(+ 1 for even permutation of ijk 

£ijk " )- 1 for odd permutation of ijk 
0 for no permutation 

The 2nd-order tensor components of the 4th-order tensor can be 

obtained by contraction, they are: 

i] 13kl   kl 

6.. S. .. , = D' ik i]kl   ]1 

(2) 

(3) 

Equations (2) and (3) are the only distinct components because 

of symmetry, i.e., 

Sijkl = Sijlk 

Sijkl " Sklij 

The 3rd-order components of the 4th-order tensor are: 

(4) 

emik Sijkl E Qmjl 

emij Sijkl -  Qmkl 

(5) 

(6) 

Again, from symmetry conditions Eq. (4), Eqs.(5 and 6) are the 

only distinct components. Furthermore, it can be readily shown 

from the properties of the permutation tensor e^ that Q'^i =  0« 

The 2nd-order components of Q .. then takes the form: 

e_j njl ^njl njl Emik ijkl   nm 

£ . , Q1 . ,= E^,., £_.. ^ S^,,, = T:_ = 0 
nkl u mkl' nkl mij "ijkl nm 

(7) 

(8) 
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First and Second order invariants can now be derived for those 

2nd-order tensor components I Dkl, D'.^ Tnm 1 of the 4th-order 

tensor S... ,. 

The first order invariants are: 

\l  Dkl = 5kl fiij Sijkl E h (9) 

6ji Dji ■ sji 6iic sijki 5 H (10) 

6nin Tnm = 5nm £njl emik 8ijkl S ^^   h (11) 

Expanding Eq.(9) we can express the first order invariants of 

S. .. . in terms of its components.  In 2-space, i.e., for i/j#k#. 

1,2,   they are: 

h  ' Sllll + S2222 + 2S1122 (12) 

ll  " Sllll + S2222 + 2S1212 (13) 

h  "AS1122   + 4S1212 aA) 

I        It is evident from Eq. (12),(13), and (14) that only two I's are 

independent.  This is consistent with the induction that there 

are two first order invariants in 2-space for a 4th-order tensor, 

!       \'e arbitrarily assign I, and I2 to be the first order invariants 

to be consistent with underived definitions given by Hearraon 

Also, to be consistent with the definition in Ref. [1], Eqs. 

(11 and 14) have been multiplied by-2. 
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The second order invariants which are hitherto not known 

can be arrived at in similar manners.  By taking, what is in 

effect, ehe  dot products of the cross products of the vector 

components of the 2nd-order tensor components (D, ,, D.-w Tnm I 

of the 4th-order tensor /s. ■icl \/ the following 2nd-order 

invariants can be arrived at. 

il), = 6   e ., e ., T.  T. , = /a, - 2a- + ai,\ - (l  ac - a,\= 0  (15) 

^2 ■ 6pq epik eqjl Dij Dkl = al " a6 (ie) 

^3 ' 6pq epik eqjl Dij Dkl = a4 " a7 (17) 

$*  =  &       e -I, e ji D. . D', = a- - a0 (18) 4   pq pik qjl ij kl   2   8 

^T = 6  e j,. e ., D. . T,. = 2 (a, - a0\ (19) v5   pq pik qjl ij kl   \ 6   SI 

\p- = 6   e .. e ., Dj . T. , = 2 (a0 - cx-\ (20) Y6 pq pik qjl Lj kl   \ 8   71 

li;. can be expressed in terms of S^.^ by using Eqs.(2,3 and 7) 

For example: 

it, = 6    £..£.,£.    E. .  S   L Ei    EIA.  S (15') ^1   pq pik qjl    img jnh mngh ksu Itv stuv 

ilu = 6   e ., e ., 6  S  . . 6  S . , (16') v2 pq pik qjl mn mni^  uv uvkl 

For conciseness, the remaining of ^. are not expanded.  The a. 

expressed in terms of components of SJ^VI in 2-space are: 
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2 2 2 
al = 8iijj Skkil ' S11U + 4SnilS1122 + 2S1111S2222 + 4S1122 + 4S1122S2222 f ■;222.'   (2.1) 

a2 " Siiij Sklki ' Snil f 2S11HS1122 + 2S1111S2222 + 2S1111S1212 + 4S1122S1212     (22) 

* 2SU22S2222 + 2S2222S1212 + S2222 

2        2 2        2       2 
a3 - Sijkl Sikil - S1U1 + 4S1112 *  4S1122Si212 + 4S1222 + 2ri212 + S2222 

(23) 

a4 " Sijij SklKl ■ S1U1 * 4S1111S1212 + 2SilllS.:222 + 4S1212 + 4S1212S2222 + S2222  (24) 

a5 " Sijkl Sijkl - SU11 + 4S1112 + 2SJl22 + 4SJ212 + 4S?222 + S2222 

«*   -   S, ,. ,   S^,, s2   ,,   ♦ 2S11,,S,,..   ♦   2S:,-»   +   2S:.,_   +   4S.,,,.,8,,,,   +  2St "6       "iikl   "jjkl       "1111        "111101122  T   "1122  T  ^1112  *  ,ö2212s,1112  *  ""2212 

+   2S1122S2222   +  S2222 

(25) 

(26) 

2 2 2 
a7 B Sikil Sjkjl ' Sllll * 2S1111S1212 + 2S1112 + 4S1112S2212 + 2S1222 (27) 

* 2S1212S2222 + 2S1212 + S2222 

2 2 
a8 " Siijk Sljlk " Sllll * S11U S1212 + SllllSli''2 + 2S1112 + 2S1122S1212 

* 4SI112S2212 * 2S1222 + S1122S2222 + S1212S2222 + S2222 

(28; 



- 7 - 

It can be shown that both iK and o^ are invariant to coordinate 

transformations. Just as in the first order scalar contractions, 

not all of the 2nd-order scalar contractions, 4K or o^, are 

independent.  Gauss-Jordan reduction revealed that the system of 

equations Eq. (21) to (28) is of defect three.  The three residual 

equations are; 

OL1  - a2  -  2a6 + 2a8 = 0 (29) 

a2 - a4 + 2a7 - 2a8 = 0 (30) 

013 - a5 + ct6 + a7 - 2a8 = 0 (31) 

In addition, there exist three relations between a's and 

the firat invariants I]»!? as can be showr) from E<3S* (12) , (14) , (21) , 

(23), (24) and (25). 

ij = ai (32) 

1*  = 8(a5 - a,) (33) 

/^ +(1/2)I2)
2 = ot4 (34) 

Equations (21) through (34) indicate that out of the eight a's 

only two a's are independent.  This is again consistent with the 

mathematical induction that there are two 2nd-order invariants 

for a 4th-order tensor in 2-space.  Any two a's can be arbitrarily 

assigned as 2nd-order invariants.  We chose a3 and a7 and define 

the following combinations as 2nd-order invariants. 



I 
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I 

I 1^ = 2a7 - (ij + (1/2) I2)
2 (35) 

Il2- 8(a3- a7)+ (l, + i2) 

I 
(36) 

We will show in the following section that these particular 

combinations lend themselves to a convenient geometric inter- 

pretation akin to the Mohr's circle for 2nd-order tensors. 

Summarizing, we have derived 1st and 2nd-order scalar contractions 

for a 4th-order tensor.  We also show that there are two independent 

Ist-order invariants and two independent 2nd-order invariants for 

I       a 4th-order tensor in 2-space.  They can be expressed in terms 

of the components of the 4th-order tensor components as: 

II = Sllll + S2222 + 2S1122 (37) 

h  -4S1122 + 4S1212 (38) 

"l = (Sllll " S2222)2 ^ 4(S1112 + S2212)2 (39) 

' II2 ' (Sllll + S2222 - 2S1122 " 4S1212)2 + 16^S1112 " S2212J2  (40) 

1       In contracted notation*,the equivalent expressions are: 

| h = Sll + S22 + 2S12 (37,) 

I2-"4S12+S66 (38,) 

' "I" (Sll " S22)2 + (S16 + S26)2 

I II2 = (Sll + S22 " 2S12 " S66)2 + 4 ("16   "26/ 

I*The contracted notation follows the common practice of representing a 
4-th order tensor with two indexes where 8^]^= ^llt  sl].22 = s12» 
2S1112 -  s16t   2S2212 -  s26' 4s1212 - s66*  For more detail see Ref.[1] 

(39') 

Sw - s^A2 (4-) 

-■:' 
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Geometrie Interpretation of 4th-0rder Tensor Invariants 

Because of the large number of components Involved/ the 

geometric interpretation of tensors of order higher than two is 

a formidable task.  Even in the plane case, the geometric 

representation for a 2nd-order tensor is equivalent to represent 

in two dimensions a system of three quadratic trigonometric 

functions.  Mohr's circle provides such a representation.  It 

contributed to better visualization of a 2nd-order tensor and 

provided greater operational convenience for engineering problems 

in the analysis of stress and strain as well as for problems in 

rigid body dynamics.  Similarly, the representation of a 4th-order 

tensor is equivalent to representing a system of 4th-order 

trigonometric functions. A geometric representation similar to 

that of the Mohr's circle has been suggested by P. Mast [2]. 

Utilizing the invariants derived in the previous section Eqs. (37), 

(38)f (39) and (40), this can be generalized to geometrically 

represent the tzansformation of a 4th-order tensor from any 

arbitrary non-principal direction. 

From the definition of tensors, for rotation about the x. axis, 

the components of a 4th-order tensor S. .., at an arbitrary 

orientation 6 with respect to a material coordinate* can be 

transformed to the components S! .., at another orientation 6* 

through the relation [1]: 

♦Without loss of generality, we may consider the material 
coordinate coincides with the principal direction. 
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silll 
1 r   4 

1122 
2 2 

in n 

2S 
1112 

2222 

im  11 

m
4  4 m rn 

j- 2m3n 2{m  n-mn > 

4 

2S 
22121 

4S 
1212 

n - 2 2 2m  n 

■2mn3  2(mn3-m3n)    3m*n*-n 

4m2n2 

2m3n n4 2mn3 •i   ■) 

m n 

mn   -m  n m
2n2 m  n-mn 2    7 

-m n 

4   -,   2   2 m -3m n 2iim3 3mV-n4 
mJn-mn 

-2mn3 m4 
-2m3n m" n 

2   2     4 
m n -n 2m 3n 4,22 m  -3m n mn   -m n 

2 2 3  3) 2 2 

ill! 

1 ':•:.: 

112 

2;::.' 

t 4(mnJ-m-,n'   4n/nz   4 (m3r.-nm3)  (m2-n2) 

where m and n are directional cosine and sine. 

The graphical representation of this 4th-ordir tensor transformation 

can be observed by rewriting Eq. 41 in multiple cmgle represcntal.ion 

as described by Tsai and Pagano [3] in the following form: 

2212 

1212 Ü 

(41) 

''llll 

* 

1 
Ul -U2 

^1122 , 
i 

-U4 0 

2«! ' 0 U6 

. 
S2222 Ul U2 

2S2212 0 U6 

1S{211 4"5 0 

U6  -U3    ü7 

U3   -U7 

U2  2U7   2U3 

-ü6   U3   2U7 

U2 -2U7  -2U3 

0   4U3  -4 •J 

1 

cos 2$ 

sin 2')> 

cos 4',f 

sin 44' 

(42) 

J 
where 
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♦ » e - e' 

üi - V* (3Ii + ^ ) 

'       U2= 1/2(S2222-Sllll) 

U3 = 1/8 I  4S1212 + 2S1122 - S^^  -  S2222| (43) 

j       ü4 ", 1/8 ll2  '  h) 
ü5 = 1/8 (la + Ii) 

I       ü6 " (S1112 + S2212] 

j       ü7- ^W Sim -S2212) 

I 
I 
I 
I 
I 

If U, and Ug are the side? of a right-angled triangle with a 

I       hypothenuse R,, as shown in Fig. 1, then 

The geometric interpretation of this tensor transformation 

can be recognized after some rearrangements. Take the first of 

Eq. (42) for example, 

Silll " Ul ' U2 cos 2^ +  U6 sin 2* " U3 COS 4<* +  U7 8in 4*      (44) 

Consider the terms containing 24» and define: 

U^ = U2 cos 2$ -  U6 sin 2(j) (45) 

U2 ■ R- cos 26 

Ug = Rj^ sin 29 (46) 

Rl * U2 cos 2e + u6 sin 29 

Substitute Eq. (46) into (45), we obtain 
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U' = (U2 cos 29 + U6 sin 26)cos(20 + 2^) (47) 

= R, cos 28' 

Similarly, we can express terms containing 4^) as: 

U- cos 4(1> - U- sin 4()) ■ R2 cos 49' (48) 

where 

R, = U3 cos 4(|> + U7 sin 44» 

Making use of Eq. (47) and (48), Eq. (44) simplifies into the form: 

siiii ^ üi " Ri cos 20, ~ R2 cos 491 (49) 

As shown in Fig. 2, Eq. (49) can be represented by the horizontal 

projected distance between the radius vectors of two circles 

separated by distance U, between centers and with radii R^  and R2 

respectively.  The radius vector for ^  rotates at 26' and that 

for R2 rotates at 46'. Both the original S^^  at 9 and the 

transformed S'  , at 9' are shown in Fig. 2.  It can also be 

easily shown that R, and R2 are the roots of the 2nd invariants 

[Eq. (39), (40)]. 

*2-(oi + uj
7)^.i/8(ii2) 

\l/2 

Carrying out similar rearrangements« Eq. (42) can be written as: 



■   "■ 

51111 

S1122 

Sill2 

^2222 

6,2212 

Si212 

u. 

-u. 

-R, 

-  13  - 

0 

0 

1/2R, 

-R, 

0 

-R, 

1/2R, 

0 

0 

R. 

0 

-R. 

-R, 

cos   26 ' 

sin 29' 

cos 46' 

sin 40' 

0 
«_ 

(51) 

The components of the  4th-order tensor at orientation 8   (which is 

equivalent to ♦ = 0 in Eq.   51)   can be represented geometrically 

in Fig.   3.     In the construction of this representation,  it is 

assumed that: 

U2  > 0 or S2222 > S1111 

Ü3 >  0 or ( 4S1212 + 2S1122 

U4 > 0 or 

(4S1212 + 2S1122) >   (Sllll + S2222) 

4S1212 ^llll + S2222 + 6S1122) 

In addition, just as in the Mohr's circle, certain sign 

conventions must be followed. A positive rotation 4) (counter- 

clockwise) in the material plane is equivalent to a positive 

rotation of 2^ (counter-clockwise) of radius vector R^ and a 

positive rotation 4$   (also counter-clockwise) of the radius 

vector R2.  The signs of the components S..kl are determined by 

the direction of the measurements.  All measurement« from left 

to right and those from bottom to top are positive.  In order 

(52) 

■ 
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I 

to avoid confusion, the directions of measurements as indicated 

I       by the arrows in Fig. 3 must be followed. For example, S1112 

is obtained by the vertical distance from the tail of the 

■       diameter vector of circle R2 to the head of diameter vector of 

t       circle(l/2)R1. Note that when 6 > IT/2, the measurement direction 

for S1112 is reversed and S1112 takes on negative values. 

I The above geometric representation can be constructed from 

any given set of Sj.^.  The orientation of the principal 

I       direction need not be known.  The invariants 1^, I2, 111,  II2 

can be computed from Eqs. (37,38,39 and 40).  Fror. Eq8.(43 and 50), 

U, , \K,  V*,  R-, and R- can be computed. These values can be use-l 
14   5   1      * 

j        to locate the centers of tha circles, reference lines A and B 

and the circles R^ (1/2^,and R2 as shown in Fig. 3.  Either 

I        S,,,- or S,-,, can then be used to determine the orientation of 

I        the radius vector Rj.  Thus the principal direction 6 can be 

directly determined, which in turn determines the radius vector R^ 

j        The components of the 4th-order tensor S^^  at orientation 4» 

from S. .., can be determined by rotating the ^  by 2*  and R2 by 4<j) 
IljJCl 

and the appropriate distances measured according to the suggested 

sign conventions. 

The representation presented herein is but one of many 

I        available.  It serves, primarily, to illustrate the essential 

features which exist in the geometrical representation of a 

j        4th-order tensor.  Detail variations will depend on personal 

preferences and specific application. For example, if the 

'        transformation of S^^  in contracted notation is desired, the 

|        third, fifth and sixth equations of Eq. (51) must be multiplied by 

I 
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I 

2, 2 and 4 respectively.  It follows that in the geometric 

j      representation, the circle (1/2)R1 can b® removed and concentric 

circles 2R- and 4R0 added to the cricle R,.  In addition, the 
12       * ■ 

location of reference lines A and B as well as the relative 

positions of the circles are arbitrary.  If they are changed 

from the configuration presented here, appropriate sign convention 

|       has to be re-established. 

It is also worthwhile to note the analogy between the Mohr's 

I       circle transformation for 2nd-order tensors and the representation 

■       for 4th-order tensors.  In Mohr's circle, the first order 

invariant determines the location of the center of the circle, 

I       and the 2nd-order invariant determines the magnitude of the circle. 

In the 4th-order representation, the first order invariants 

I       determine the location of the centers of the circles and the 

reference lines A and B while the 2nd-order invariants determine 

the magnitudes of the circles.  For a rotation $  in the physical 

I       plane, the second order transformation is represented by a 

rotation 2$  in the Mohr's circle while the 4th-order transformation 

I       xs represented by rotations of 2(j) and 44) of the circles. 

In practical application, this geometric representation is 

used to graphically transform the compliance matrix S^.j^ of 

fiberglass reinforced composites.  It was found that upon the 

computation if the invariants and the construction of the circles, 

I       any S! .,, can be rapidly def.irmined by laying out two vectors 

R and R„ at the desired orientations 20 and 49. From constructions 

I 
I       on 8"x 10"graph papers*,the accuracy attained is within 1% of 

|        the computer computed result? using Eq. (41) . 

I 

♦Graphical construction can be simplified by normalizing Eq.(51) by 

Rj^ or R2 0^ ul' 
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In cases where principal direction is to be found, it can be 

determined graphically by the intercept of S|212 to the circle 

R,, and this is found to be much faster than analytically setting 

Sill2 or S2212 to zero  in EcJ* ^41^ and solve for 0* 

Applications 

We have derived the first and second order invariants for 

4th-order tensors and have shown that in 2-space there exists 

two independent first order invariants and two independent 

2nd-order invariants.  By expressing the 4th-order tensor 

transformation in multiple angle representation and making use 

of the invariants, a geometric representation analogous to the 

Mohr's circle can be constructed. 

The invariants and graphical representation presented here 

are applicable to 4th-order tensors encountered in the physics 

and mechanics of solids and fluids. They are also applicabi-' for 

certain engineering constants for composite materials which 

transform in the form of Eq. (1).  Thus, similar invariants and 

geometric representations can be derived for the A, B, and D 

matrix for laminate plates [4].  Familiar applications of the 

invariants of 2nd~order tensors and Mohr's circle suggest some 

natural applications of their counterparts for 4th-order tensors. 

For example, the principal values and principal directions of the 

stiffness tensor for crystals and composite materials can be 

conveniently obtained from the invariants and the graphical 

representation.  In view of the contribution of stress invariants 
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-o the formulation of yield criterion for Isotropie materials, the 

4th-order tensor invariants may be useful in the characterization 

of the flow and fracture of anisotropic .solids. Finally, the 

newly derived second order invariants may be considered as 

additional intrinsic material properties and may be used to 

simplify optimization of the physical properties of laminated 

composites as suggested in Ref. 13]. 

■ 
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Appendix 

Invariants of 4th-order tensor in S^space; 

The derivation of the invariants of a 4th-order tensor in 

3-space for a rotation of coordinate around the X_-axis is 

similar to that in 2-space.  Because X ■ X* in the transformation, 

the components of S,.., which contain the 3 component transform 

as tensors of orders less than four; i.e., the components 
S1123, S1113, S2223 
S2213 S2312 S1312        Transforms as 3rd-order tensor   (Al) 

S1313' S2323' S1323 

S1133' S2233' S3312 

Transform as 2nd-order tensor   (A2) 

S3323' S3313 Transform as Ist-order tensor    (A3) 

Thus, in addition to the Invariants derived (Eq. 37 to 40), there 

exist invariants associated with the tensor components in Eq.(Al to A3). 

For the components in Eq.(Al), it can be easily shown that there 

exists no Ist-order invariants.  The 2nd-order invariants are: 

2    (A4) II3 " (S1123 " S2223 + 2S1312) + (S1113 " S2213 ~ 2S2312) 

X24 " (^1123 * S2223 " 2S1312) 2 + (S1113 + 3S2213 " 2S2312]2  (A5) 

"S ' (3S1113 + S2213 + 2S2312)2 + (S1123 + 3S2223 + 2S1312)2   (A6) 

II6 ' (S1113 " S2213 + 2S2312)  + (S1123 " S2223 " 2S1312)      (A7) 

for  the components in Eq. (A2), the first and second order invariants 

can be obtained from well known results of 2nd-order tensor 

transformation. The first order invariants are 



I 
I 
I h  - S2233 + S1133 (A9) 
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Tad«;    + 4S (A8) I3   4&2323   *t,1313 

The second order invariants are 

"7 " (S1133 " S2233)2 +  (2S3312)2 (A10) 

II8'(S2323-S1313)2  +   (41i23l2 )' (A11! 

Finally, for the components in Eq.(A3), no first order invariants 

exist and the second order invariant is the magnitude of the 

vector 

"9 ' (S3323)2 + (S3313)2 (A12, 

Recapitulating, for a 4th-order tensor S^^ in 3-space in a 

rotation around the X.-axis, the Ist-order invariants are: I^Eq.37), 

I2(Eq.38), I3(Eq.A8), I4(!3q.A9), 

and the 2nd order invariants are IIj^Eq.38), II2(Eq.39), IT3(Eq.A4), 

II4(Eq.A5), II5(Eq.A6), II6(Eq.A7), II7(Eq.AlO), II8(Eq.All), 

II9(Eq.Al2) . 

The geometric representations of the transformation of the 

components in Eq.(A2) and Eq.(A3) are that of the conventional 

Mohr'r circle and that of the vector circle respectively.  The 

geometric representation of the components in Eq.(Al) can be 

seen by expressing the transformation in multiple angles using 

the relationships 

sin3 0 - 1/4(3 sin 9 - sin 38) 

2 
cos 6 sin  6 = 1/4 (cos 6 - cos 30) 

cos2 6 sin 9 = 1/4(sin 0 + sin 30) 

cos3 0 = 1/4(3 cos 0 + cos 30) 

(Al 3) 
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" 
■■ 

' 

b1123 
R4 0 R3 0 cos 9 

b1113 0 R5 0 R3 sin 9 

2223 R5 0 -R3 0 cos 36 

b2213 ■ 0 R4 0 -R3 sin 39 

S2312 0 -R6 0 -R3 

b1312 -R6 0 R3 0 

(Al 4) 

whare 

R3 - 1/2(ll3)
1/2, n4 - 1/2(11,)^, R5 - V2{^Y/2. 

\ ' V« K) 1/2 

The geometric representation of equation (Al4) is similar to the 

one constructed for Eq.(51) and is shown in Fig. 4.  In this 

construction, II3r 
II4r II5' II6 are assume<* to be positive.  It 

can be noted that in the principal direction (9 = 0), 

S1113 = S2213 ■ S2312 = 0 indicating that the material is symmetric 

to the 2-3 plane, i.e.,a mono-clinic material with X, as the 

principal axis.  It is important to note that since the transformation 

of S. .,, in 2-space (Eq. 41) is not coupled to the transformations 

of the S. .., components in 3-space (Eqs.Al, A2 and A3), the 

invariants Eqa. (37-40) and geometric representation (Fig. 3) 

remain the same for 3-space. Previous remarks on the applications 

of the invariants and geometric representation for 2-space are 

also applicable for their counterparts in 3-space. 
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